Recommended Dose

Home » Uncategorized » The Sphygmomanometer and its Impact on Clinical Practice

The Sphygmomanometer and its Impact on Clinical Practice

The following post is a paper written by Haylie Helms (@HaylieHelms), a junior majoring in Biology, Society, and Environment at the University of Minnesota, in the spring semester of 2015 for Dominique Tobbell’s class HMED 3075.  In a recently published pair of articles in the Bulletin of the History of Medicine, Dominique Tobbell and Lois Hendrickson described  their use of historical artifacts (from the Wangensteen Historical Library) in their history of medicine courses.  Ms. Helm’s paper is the third of three papers offered as examples of the work students have done in their classes.

Introduction

Blood, and its circulation throughout the body, has been studied for thousands of years. The earliest recorded writings about the circulatory system can be found in the Ebers Papyrus, an ancient Egyptian manuscript, dating back to 1500 BCE.[1] The Egyptians acknowledged the presence of mtw, which can be roughly translated to vessels that transport blood and nutrients throughout the body.[2] The understanding of how the blood circulated remained a highly debated topic throughout much of the 17th century. Although William Harvey, an English physician, is credited with the discovery of blood circulation in 1628, most physicians of the time believed that the lungs were responsible for moving the blood.[3] Once the connection between heart rate and pulse was discovered, it was then possible to determine blood volume and blood pressure.[4] Blood pressure was measured for the first time by Stephen Hales in 1733.[5] Hales placed a brass tube into the crural artery of a mare and connected to it a glass tube that was nine feet long.[6] By calculating how high the blood rose, Hales was able to calculate the blood pressure. It was not until nearly a century later that blood pressure was accurately studied. Early methods of studying blood pressure in humans followed the same technique.  The first noninvasive blood pressure measurement tool, called a sphygmomanometer, was invented in 1881 by Samuel Siegfried Karl Ritter Von Basch.[7]

I will examine the introduction of the sphygmomanometer into medical practice using Roger’s sphygmomanometer from the Wangensteen Historical Library of Medicine. In particular, upon the invention of the sphygmomanometer, how were the physicians’ understanding of heart health altered? In what ways did the invention of the sphygmomanometer impact clinical diagnoses? Lastly, how did the user of the sphygmomanometer change from when it was first introduced in practice in 1881 until the 1930s? It is hypothesized that the invention of the sphygmomanometer alone did not change the physician’s understanding of heart health. It was in unison with many other areas of research that the field of cardiology and pathology progressed. As a result of the progression of clinical diagnostics, the user shifted from the scientist to health promotion companies. No longer was it solely the physician who ordered for blood pressure to be measured; the general public was requesting it as well. Therefore, the invention of the sphygmomanometer set the stage for a deeper understanding of heart anatomy and disease for both physicians and the general public alike.

The Von Basch Sphygmomanometer

Early methods for measuring blood pressure required glass tubes filled with mercury to be inserted into the artery of the patient. The invasiveness of the procedure limited the feasibility of these devices to be used as a diagnostic tool. Von Basch’s 1881 noninvasive sphygmomanometer, however, used a rubber ball that was placed over the radial artery to suppress the pulse.[8] The rubber ball was filled with water and connected to a mercury tube.[9] When the pulse was no longer felt, the reading on the mercury tube indicated the systolic blood pressure.[10][11]

M0017687 Samuel Siegfried von Basch: Sphygmomanometer

Figure 1: Samuel Siegfried von Basch: Sphygmomanometer. Wood engraving Down’s surgical instrument catalogue Published: 1906. Welcome Library.

 

Von Basch went on to measure 100,000 patients’ blood pressure over the span of ten years using his sphygmomanometer.[12]  He concluded that the normal blood pressure was between 135 and 165 mmHg.[13] He also noted instances when patient’s blood pressures were abnormal and their current symptoms or diagnosis. Through his work, Von Basch identified the equivalent of today’s hypertension, which he called latent atherosclerosis, and cardiac hypertrophy.[14]

Although the Von Basch sphygmomanometer was safe for patients and provided accurate clinical data, it was not widely used by physicians.[15] Dr. Scipione Riva-Rocci stated, “It is not surprising that despite the many persistent attempts to introduce sphygmomanometry into medical practice, this has remained nothing more than a luxury measurement or an unusual investigation.”[16] Most physicians of the time preferred old techniques such as using the pressure from their hands to restrict flow.[17] The British Medical Journal published their view that sphygmomanometers “pauperizes the senses and weakens clinical acuity.”[18]  It was not just the sphygmomanometer that was under scrutiny; many physicians and scientists of the time were opposed to many new technologies at the turn of the century. Upon the introduction of the x-ray machine into clinical practice in 1895, physicians preferred to use their hands to make diagnosis.[19]

The Introduction of the Modern Blood Pressure

In 1896 Dr. Scipione Riva-Rocci published his method of measuring blood pressure.[23] Riva-Rocci’s method placed a 5 cm band around the patient’s arm and inflated it using a bulb filled with air.[24] The cuff was inflated until the pulse was no longer detected; like the Von Basch sphygmomanometer, the value recorded was the systolic pressure.

sphyg2

Figure 2: Riva-Rocci-type sphygmomanometer, originally developed in 1896.[25] Wangensteen Historical Library of Medicine.

In 1901 Von Recklinghausen found a crucial flaw in Riva-Rocci’s system; the band was too narrow.[26] This resulted in an acute angle that would form between the cuff and the skin. Coincidentally, it caused local areas of high pressure buildup, which skewed the pressure reading.[27] Von Recklinghausen fixed the problem by simply widened the band to 12 cm.[28] The sphygmomanometer with the wider band provided accurate and safe blood pressure readings that could be used for clinical diagnostics and research. However, this method only allowed for the measurement of the systolic blood pressure and not the diastolic pressure.

In order to measure both the systolic and diastolic pressure, the oscillometric technique, which was created in 1876, was paired with the sphygmomanometer.[29] Under the oscillatory blood pressure method, the user would use the Riva-Rocci method while watching the oscillations transmitted to the mercury in a manometer.[30] When the cuff pressure was equal to the arterial pressure the compressed artery would throb causing small fluctuations in the cuff pressure.[31] The fluctuations would transition from small to large oscillations identifying the diastolic pressure.[32]

The Riva-Rocci method plus the oscillatory method would be modified once more to acquire the basic method of blood pressure measurement seen today. In 1905 Russian surgeon Dr. Nikolai Korotkoff identified the difference in sound between the systolic and diastolic pressures.[33] Using a stethoscope, Dr. Korotkoff was able to hear tapping sounds, which he explained as the blood flowing back into the artery.[34] Known as the Korotkoff sound, the slight difference in the way blood pressure was recorded changed the way physicians viewed the device. Initially, many physicians were opposed to sphygmomanometers because they believed it took away their reliance on their senses and weakened clinical acuity. By requiring the physicians to listen for the sound, it brought back the prestige of the method since only those trained could properly acquire and interpret data. The Korotkoff sound set the stage for future cardiologists to uncover the underlying pathology.[35]

The Impact of the Sphygmomanometer

Physicians in the late 1890s understood the effects of the vessels and heart on blood pressure: blood pressure is controlled by the constriction and dilation of blood vessels and the frequency and stroke volume of the heart.[36]  Riva-Riccoi warned physicians of the usefulness of the sphygmomanometer during clinical diagnosis.

Therefore, if all aspects of the problem were like this [multiple factors affecting the blood pressure], and only like this, sphygmomanometry would not have any clinical applications. The data it supplied would only give us abstract information of purely academic interest, but nothing that could be used on patients or for learning the course of a morbid process.[37]

Many researchers studied the usefulness of blood pressure readings over the next decades in order to uncover its usefulness. Common studies included finding trends associated with patient size, temperature, position (sitting, standing, and laying), age, occupation, diet, sleep, time of day, alcohol and tobacco, mental state, exercise, external temperature, atmospheric pressure, and menstruation.[38] Despite all of the research conducted, the data sphygmomanometers collected was still not very useful in clinical diagnostics for pathological diseases.

Like all current knowledge of symptoms and disease, discoveries were made based on repeated exposure and documentation. When patients had abnormal blood pressures that could not be explained, physicians documented their symptoms and the course of their illness. For example, arterio-sclerosis was diagnosed with the aid of the sphygmomanometer and the observation of thickening of superficial arteries, signs of enlarged left ventricle, and the “ringing aortic second sound.”[39]

As time went on, and more correlations were found between symptoms, vitals, and diagnoses, physicians began to uncover the usefulness of the sphygmomanometer in clinical practice. In 1910 Dr. Janeway argued that the sphygmomanometer was most valued in diagnosing hypertension.[40] Physicians understood the effects and dangers of hypertension. Dr. Janeway wrote,

Hypertension is not merely a symptom of diagnostic and prognostic value, nor is it to be considered only as an effect of causes acting on the heart and vessels. It is of itself a source of altered function throughout the circulatory system, which leads to further secondary changes. These cannot in all cases be clearly separated from the primary changes producing the high pressure, but they may frequently be distinguished anatomically as well as theoretically.[41]

As compared to an x-ray machine that can be used as the sole diagnostic tool when determining if a bone is broken, the sphygmomanometer alone cannot be used to diagnose a patient. Mental state, temperature, diet, exercise, and sleep all must be considered as physicians understood the effect they can have on blood pressure.[42] As displayed in Dr. Janeway’s writings, upon the introduction of the sphygmomanometer into clinical practice, the physician’s understanding of heart pathology was further developed. The device itself did not change the physicians understanding of heart health; it set the foundation for further medical discoveries.

The Evolution of the User

The sphygmomanometer is a technology closely related to the thermometer’s history of invention, development of knowledge, introduction to practice, and evolution of the user.[43] The sphygmomanometer was initially sold to the physician or clinical researchers with the mindset that the sphygmomanometer could only be operated by someone with extensive training in the sciences.[44] It was believed that only those with a scientific background could properly acquire precise data and interpret the results. The device itself was not hard to use, however. As one physician wrote, “after all, no mysterious nor difficult [technique] is involved in sphygmomanometry, as the study of blood pressure may be correctly termed.”[45] Nonetheless, the prestige associated with the user upon the invention of the sphygmomanometer made it acceptable for only those who were trained extensively in the sciences, such as physicians or researchers, to operate it.

As physicians became more aware of the associations between blood pressure and heart pathology, there was an increase in demand for the sphygmomanometer. Blood pressure, measured by the sphygmomanometer, became a standard vital taken on patients by the 1910s.[46] Dr. Satterthwaite wrote, “No physical examination is complete without a record of the blood pressure. It is also very helpful in the diagnosis and management of cardiovascular and renal diseases and toxemias.”[47] In addition, heart health became a topic of discussion in local newspapers. Columns written by doctors explained what blood pressure is, how it is measured, and the importance of monitoring it.[48] Ads urged patients to be more aware of their heart health and to actively monitor their blood pressure. “Your high blood pressure can be measured. The sphygmomanometer registers it with absolute accuracy.”[49] Other ads in the newspaper used fear to urge patients to be more aware of their blood pressure: “He closed the door behind him and walked down the stairs in a kind of a daze, the doctor’s words ringing in his ears: ‘High blood pressure.’  ‘You may die any time – you can’t live over three years.’”[50]  “Arterio-sclerosis. Recent knowledge of the disease from which Paul Morton died.”[51]

As the demand for the sphygmomanometer increased at a rapid rate, physicians were inundated with blood pressure requests. Like the thermometer, physicians began to realize that measuring blood pressure was tedious and repetitive.[52] To ease the strain on physicians, nurses were needed to use the sphygmomanometer; the modern hospital depended on the invention of the ‘thinking nurse.’[53] As Margarete Sandelowski outlined, the ‘thinking nurse’ was necessary for quantification of clinical signs and symptoms.[54] Nurses were needed to carry out physicians’ orders and have knowledge to record, interpret, and report information vital to diagnosis and treatment.[55]

The user evolved once more; after the nurse was qualified to operate the sphygmomanometer, health promotions companies began utilizing the sphygmomanometer. Health insurance companies utilized the sphygmomanometer to promote healthy living and screen future customers for life threatening diseases. Some companies required a blood pressure evaluation prior to granting insurance coverage.[56] Other companies used the sphygmomanometer to attract customers: “For your own sake and for the sake of those you love and who are dependent on you, you should investigate the Witter Water Treatment.”[57] “When the sphygmomanometer, before your eyes, shows that your pressure has been reduced, there is no chance of error. We get, in the majority of cases, a marked reduction in pressure after one treatment.”[58] Although treatments such as the Witter Water Treatment were not scientifically proven, and likely ineffective, they brought the sphygmomanometer to the attention of the public. Patients were now approaching their physician for blood pressure measurements. These actions by patients, and outside organizations, aided in the shift of medicine at the turn of the century to a scientific, evidenced based, system.[59]

Conclusion

The invention of the sphygmomanometer alone did not change the physician’s understanding of heart health. It was in unison with many other areas of research that the field of cardiology and pathology progressed. The work of many scientists, including but not limited to Von Basch, Riva-Rocci, and Korotkoff, laid the foundation for future cardiologists and pathologists. Symptoms were recorded in addition to blood pressure readings to properly diagnose patients. Initially the blood pressure readings could only be obtained by the physicians as there was a belief that the physician was the only one scientifically inclined enough to record and interpret the data. However, as blood pressure became a standard of practice, and patients began to request blood pressure readings, the physicians were inundated with the tedious task of testing the blood pressure. To alleviate the strain on the physicians, nurses were trained to take the blood pressure. The ‘thinking nurse’ led to the increased efficiency in the hospital and a more scientific based approach in diagnostics. In addition, the routine use of the sphygmomanometer led to a shift in knowledge surrounding heart anatomy and disease from physician to public. Newspapers ran advertisements to inform the public of the importance of getting regular blood pressure readings. Other organizations, such as insurance companies, understood the dangers of high blood pressure and required customers to receive a blood pressure test before they could receive insurance. Prior to the invention of the sphygmomanometer routine tests in the clinical setting were not possible due to the invasiveness of the procedure. Therefore, the invention of the sphygmomanometer set the stage for a deeper understanding of heart anatomy and disease for both physicians and the general public alike while aiding in the shift of the hospital to a greater scientific approach in the turn of the century.

Bibliography

“Display Ad 11.” Los Angeles Times, August 4, 1923.

“Display Ad 451.” Los Angeles Times, February 4, 1923.

American Diagnostic Organization. “History of the Sphygmomanometer.” Accessed November 11, 2015.

Barr, Justin. “Vascular Medicine and Surgery in Ancient Egypt.” Journal of Vascular Surgery 60, no. 1 (2014): 260-263.

Booth, Jeremy A. “A Short History of Blood Pressure Measurement.” Proceedings of the Royal Society of Medicine 70, no. 11 (1977): 793-799.

Detroit Pharmaceutical Co., Catalogue of Physician’s Supplies: Including drugs and chemicals, dispensing supplies, pharmaceuticals, surgical instruments, electric apparatus, trusses and appliances Michigan: Aldine Printing Works, 1894.

Evans, Dr. W.A. “How to Keep Well: Blood Pressure.” Chicago Daily Tribune, June 28, 1914.

Faught, F.A. Blood-Pressure Prime. Philadelphia: .P. Philling & Son, 1914.

Howell, Joel. Technology in the Hospital: Transforming Patient Care in the Early Twentieth Century. Baltimore: Johns Hopkins University Press, 1995.

Janeway M.D., Theodore Caldwell. The Clinical Study of Blood Pressure. New York: D. Appleton and Company, 1910.

Kotchen, Theodore A. “Historical Trends and Milestone in Hypertension Research: A Model of the Process of Translational Research.” Journal of Hypertension 58 (2011): 522-538.

Middleton, Dr. William S. “Blood Pressure Determination: A Nursing Procedure.” The American Journal of Nursing 30, no. 10 (1930): 1219-1225.

Noyes, Bradford. “The History of the Thermometer and the Sphygmomanometer.” Bulletin of the Medical Library Association 24, no. 3 (1936): 155-165.

Ogedegbe, Gbenga. “Principles and Techniques of Blood Pressure Measurement,” Cardiology Clinics 28, no 4. (2010): 571–586.

Riva-Rocci, Dr. Scipione. “A New Sphygmomanometer.” Gazzetta Medica di Torino 47, no. 50 (1896): 981-996.

Sandelowski, Margarete Devices and Desires: Gender, Technology, and American Nursing. Chapel Hill: The University of North Carolina Press, 2000. 21-43

Satterthwait, Dr. Thomas E. Cardio-vascular Diseases: Recent advances in their physiology, diagnosis, and treatment. New York City: Lemcke and Buechner, 1913.

Science Museum Brought to Life, Exploring the History of Medicine. “Bloch Type Sphygmomanometer, Paris, France, 1881-1913.” Accessed December 7, 2015.

Soto-Perez-de-Celis, Enrique. “Karl Samuel Ritter Von Basch: the Sphygmomanometer and the Empire.” Journal of Hypertension 25, no. 7 (2007): 1507-1509.

Tracy, Dr. S.G. “Arterio-Sclerosis: Recent Knowledge of the Disease from which Paul Morton Died.” The Washington Post, January 25, 1911.

 Endnotes

[1] Justin Barr “Vascular Medicine and Surgery in Ancient Egypt.” Journal of Vascular Surgery 60, no. 1 (2014): 260.

[2] Barr, “Vascular Medicine and Surgery in Ancient Egypt,” 261.

[3] Jeremy A Booth “A Short History of Blood Pressure Measurement.” Proceedings of the Royal Society of Medicine 70, no. 11 (1977): 793.

[4] American Diagnostic Organization. “History of the Sphygmomanometer.” (accessed November 11, 2015).

[5] Booth, “A Short History,” 794.

[6] Booth, “A Short History,” 794.

[7] Enrique Soto-Perez-de-Celis.”Karl Samuel Ritter Von Basch: the Sphygmomanometer and the Empire.” Journal of Hypertension 25, no. 7 (2007): 1507.

[8] Soto-Perez-De-Celis, “Karl Samuel Ritter Von Basch,” 1507.

[9] Soto-Perez-De-Celis, “Karl Samuel Ritter Von Basch,” 1508.

[10] Soto-Perez-De-Celis, “Karl Samuel Ritter Von Basch,” 1508.

[11] Soto-Perez-De-Celis, “Karl Samuel Ritter Von Basch,” 1508.

[12] Soto-Perez-De-Celis, “Karl Samuel Ritter Von Basch,” 1508.

[13] Soto-Perez-De-Celis, “Karl Samuel Ritter Von Basch,” 1508.

[14] Soto-Perez-De-Celis, “Karl Samuel Ritter Von Basch,” 1508.

[15] Theodore A. Kotchen, “Historical Trends and Milestone in Hypertension Research: A Model of the Process of Translational Research.” Journal of Hypertension 58 (2011): 522.

[16] Dr. Scipione Riva-Rocci, “A New Sphygmomanometer.” Gazzetta Medica di Torino 47, no. 50 (1896): 985.

[17] Science Museum Brought to Life, Exploring the History of Medicine. “Bloch Type Sphygmomanometer, Paris, France, 1881-1913.” (accessed December 7, 2015).

[18] Kotchen, “Historical Trends and Milestone in Hypertension Research,” 522.

[19] Joel Howell, Technology in the Hospital: Transforming Patient Care in the Early Twentieth Century, (Baltimore: Johns Hopkins University Press, 1995), 103-132.

[20] Riva-Rocci, “A New Sphygmomanometer,” 984.

[21] Riva-Rocci, “A New Sphygmomanometer,” 983-984.

[22] Riva-Rocci, “A New Sphygmomanometer,” 989.

[23] Booth, “A Short History,” 797.

[24] Riva-Rocci, “A New Sphygmomanometer,” 985.

[25] Riva-Rocci, “A New Sphygmomanometer,” 985.

[26] Booth, “A Short History,” 797-798.

[27] Booth, “A Short History,” 797-798.

[28] Booth, “A Short History,” 798.

[29] Gbenga Ogedegbe, “Principles and Techniques of Blood Pressure Measurement,” Cardiology Clinics 28, no 4. (2010): 572.

[30] Booth, “A Short History,” 798.

[31] Booth, “A Short History,” 798.

[32] Booth, “A Short History,” 798.

[33] Booth, “A Short History,” 798

[34] Booth, “A Short History,” 798

[35] Booth, “A Short History,” 798.

[36] Riva-Rocci, “A New Sphygmomanometer,” 989.

[37] Riva-Rocci, “A New Sphygmomanometer,” 989.

[38] Theodore Caldwell Janeway M.D., The Clinical Study of Blood Pressure. (New York: D. Appleton and Company, 1910), 108-127.

[39] Janeway, The Clinical Study of Blood Pressure, 143.

[40] Janeway, The Clinical Study of Blood Pressure, 137.

[41] Janeway, The Clinical Study of Blood Pressure, 148.

[42] Janeway, The Clinical Study of Blood Pressure, 108-127.

[43] Bradford Noyes, “The History of the Thermometer and the Sphygmomanometer.” Bulletin of the Medical Library Association 24, no. 3 (1936): 155-165.

[44] Detroit Pharmaceutical Co., Catalogue of Physician’s Supplies: Including drugs and chemicals, dispensing supplies, pharmaceuticals, surgical instruments, electric apparatus, trusses and appliances (Michigan: Aldine Printing Works, 1894).

[45] Dr. William S. Middleton, “Blood Pressure Determination: A Nursing Procedure.” The American Journal of Nursing 30, no. 10 (1930): 1219.

[46] Dr. Thomas E. Satterthwait. Cardio-vascular Diseases: Recent advances in their physiology, diagnosis, and treatment. (New York City: Lemcke and Buechner, 1913), 40.

[47] Satterthwait, Cardio-vascular Disease, 40.

[48] Dr. W.A. Evans, “How to Keep Well: Blood Pressure.” Chicago Daily Tribune, June 28, 1914, A4.

[49] “Display Ad 11.” Los Angeles Times, August 4, 1923, 7.

[50] “Display Ad 451.” Los Angeles Times, February 4, 1923, X123.

[51] Dr. S.G. Tracy. “Arterio-Sclerosis: Recent Knowledge of the Disease from which Paul Morton Died.” The Washington Post, January 25, 1911, 6.

[52] Noyes, “The History of the Thermometer and Sphygmomanometer,” 155-165.

[53] Margarete Sandelowski, Devices and Desires: Gender, Technology, and American Nursing (Chapel Hill: The University of North Carolina Press, 2000), 21-43.

[54] Sandelowski, Devices and Desires, 21-43.

[55] Sandelowski, Devices and Desires, 21-43.

[56] F.A. Faught, Blood-Pressure Prime. (Philadelphia: G.P. Philling & Son. 1914).

[57] “Display Ad 451,” X123.

[58] “Display Ad 11,” 7.

[59] Howell, Technology in Modern America, 30-68.


Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

%d bloggers like this: